Hello!

Phew, Chicago has survived NATO. For residents of Chicago, the assembly of world leaders at McCormick Place over the weekend was inconvenient but cool. The Loop essentially shut down for four days, as all were warned of the closures and delays. Some lucky ducks even had a 4-day weekend because offices closed in anticipation of the protestors. Metra passengers were not allowed to bring food or drink on the train, and all bags were screened prior to boarding. As a resident of downtown Chicago, I was totally impressed by the extensive yet organized presence of cops; they circled every compromised building and lined the protest route. While one violent squirmish did break out between police and demonstrators at Michigan and Cermak, it was provoked by only a handful of anarchist protesters (The Blak Bloc”) and was contained with minimum force soon thereafter. Check out this pic I took Friday afternoon; notice the homeland security SUVs parked as far as the eye can see?

Today we are going to talk about developments with my LCA inquiry introduced in May 11th’s post. AND, to follow, for your viewing pleasure, pictures of home compostable bioresins a year after being home composted. Oh the anticipation!

To recap, what I mean when I say “my LCA inquiry,” is I am investigating the value of conducting an LCA of Dordan’s conversion process in order to: (1) establish a baseline off which environmental progress can be gauged, (2) compare with industry average and/or other conversion processes, (3) submit to available LCIA databases in order to provide more current data on the environmental profile of thermoforming, and (4) understand the methodology and application of LCA.

This investigation was inspired by the SPC suggestion of collective reporting among its member companies in order to demonstrate to outside stakeholders the value of SPC membership; and, research into LCA as per Dr. Karli Verghese’s presentation at Sustainability in Packaging (click here to download the Report).

After reaching out to the SPC re: aiding in the development of tools to perform an environmental assessment of Dordan’s conversion process, it was suggested I propose the idea to the membership; if there was membership interest, I could start a member-led working group dedicated to creating methodologies for LCA application to manufacturing processes.

Since I last posted, I had the opportunity to speak with LCA practitioners in the SPC membership about my Dordan LCA inquiry. Here are a couple conversation takeaways:

It is in a company’s interest to perform an LCA of its processes if said processes are more efficient/innovative than the industry standard; the industry standard for thermoforming can be teased from the available LCIA databases, like EcoInvent and the U.S. Life Cycle Inventory Database.

A good way to determine if your processes are more efficient than the industry average, and therefore an LCA is warranted, is to perform an inventory analysis: First, determine what your process’s main resource consumptions are i.e. water and electricity. Then, collect all information pertaining to the consumption of these resources via energy and/or water bills. Consult the industry average’s rates for these environmental indicators and see how your processes compare in the context of electricity and water consumption per some functional unit i.e. 10,000 packages produced.

If you determine that a full LCA is warranted, there are MANY ways to go about it. However, it is crucial that the results/findings of which are 3rd party-reviewed in order to validate the study. This was explained to me as being quite the process, and comes with a price tag.

Based on these insights, I am going to conduct an inventory analysis of Dordan’s energy consumption per a-yet-to-be established functional unit in order to compare with the industry average for thermoforming. Stay tuned!

My next post will discuss feedback from the last portion of the Walmart Packaging SVN meeting.

As an aside, in previous posts I alluded to an S+S Sorting pilot that looks to compare the reprocessing of thermoform vs. bottle PET flake. Remember? Anyway, my colleague at S+S has yet to get back to me with the results of this pilot. Stay tuned!

AND, do you remember way back when, at the start of Dordan’s Bio Resin Show N Tell research (click here to download Report), when we tossed some of the home compostable certified bioresins (PHA, Cellulous Acetate) into Dordan’s home compost to see if the materials biodegraded? Well, this spring I analyzed the compost pile to determine the rate of biodegradation and am sad to report that little had changed in regards to the composition of the material: while lightened in color and somewhat more brittle, both the PHA and Cellulous Acetate, certified for home-composting, remain completely intact; you can even see the Dordan logo embossed on the cavity. Please note, however, that Dordan’s compost pile has had its fair share of growing pains and the “bioplastics composting trial” may not reflect a 100% active home compost.

Pictured: PHA, formed into tray with Dordan embossed logo on sample press, home composted Spring 2011.

Pictured: Melted PHA plastic from sample press forming; demonstrates lack of biodegradation.

Pictured: Close-up of Dordan logo embossed in PHA tray cavity

Pictured: Compilation of PHA and Cellulous Acetate scrap, certified for home-composting, a year after being composted.

Pictured: Cellulous Acetate scrap, certified for home composting, a year after being home composted.

WOW! As per my last post I was hoping my friend from Algix would get back to me with a more technical discussion of the company’s technology synthesizing bio plastics from algae and BOY HOWDY did I! Check out the awesome responses below.

QUESTION:

Please describe the relationship between textile manufacturers/dairy producers and algae. In other words, how does algae become a waste product of these industries’ process and how is it ideal for manipulation into bio-based plastics?

ANSWER:

Many types of algae and aquatic plants have been used for cleaning waters rich in inorganic nutrients, such as nitrogen and phosphorus compounds. The high nutrient content accelerates the growth rates and increases the protein content of a variety of “nuisance” algae and aquatic plants or “aquatic macrophytes”. The enormous “algal blooms” are seen as not only a nuisance but an environmental hazard due to the oxygen demand the algal cells require during night time respiration which can suffocate fish and other animals if the excess nutrients run off or leach into nearby water bodies. Many industries produce large amounts of nitrogen and phosphorus-rich waste-water, such as the agricultural livestock farms, i.e. dairies and swineries, fisheries, etc; as well as industrial sources such as processing plants for textiles, municipalities, distilleries, biorefineries, etc.

ALGIX, LLC is located in Georgia, hence we are focusing our efforts on industries in the southeast where we have longer growing seasons, a warmer climate and an abundance of water compared to north or southwest. The “Carpet Capital of the World” is located in Dalton, Georgia, which has over 150 carpet plants which produce millions of gallons of nutrient rich waste water. Research conducted at the University of Georgia, has demonstrated high growth rates from various strains of algae and isolated top performing microalgae strains for further development. ALGIX is in discussions with companies there to scale up biomass production and use cultivated algae as a bio-additive in their polymer containing flooring products. Likewise, we are also talking to a variety of compounders that can co-process and blend the aquatic biomass with other base resins, such as PE, PP EVA, PLA, PHA, etc. As product development progresses, various end use applications for algae-blended thermoplastics and bioplastics will arise, which will increase the demand for the raw aquatic feedstocks. The advantage is that industries can effectively capture their lowest-value waste product, i.e. nitrates and phosphates, through bioremediation using algae and aquatic macrophytes. Photosynthesis captures solar energy and converts the waste water nutrients into biomass which can then be used as a raw material for composite formulations to make resins and bioplastics.

As the demand for algal biomass increases, there will be an incentive for other industrial plants to build out algae based water treatment systems and sell the biomass. Livestock operations such as Dairies, Fisheries, etc located in the southeast and southwest can use algae to treat their manure effluents and provide additional biomass to the market. We are in discussions with large dairies companies for building out algal ponds for water treatment and biomass recovery. Over time the aquatic biomass will become a commodity product traded like other traditional agricultural crops. Currently, large amounts of corn are being diverted from food production and enter biofuel or bioplastic production. Thereby, introducing a new, low-Eco footprint biofeedstock will help alleviate the demand on food based crops for plastics and liquid fuel conversion.

QUESTION:

How is post-industrial algae synthesized into bio-based plastics? In other words, how is the protein in algae bound to the plastic components to allow for application to injection molding? What additives are required to allow for the synthesis OR used to increase the properties of the material? I remember discussions of protein-based materials (cellulous) vs. carbon-based (bio-PET) and how the former “connects” to the plastic molecule similar to how the calcium carbonate connects to the PP polymer, for example.

ANSWER:

Algae produced from wastewater treatment has been grown under nitrogen rich conditions, providing an abundance of nitrogen to make protein. During exponential growth phases in algae and aquatic plants, the composition of the biomass is dominated by protein, in the range of 30-60% depending on species. The higher protein content algae or post processed meals may have 50% or more protein which is similar to soy protein meal. Although some companies have announced efforts to refine the algal oils or ferment into ethanol, these approaches require additional refining for synthesizing into “bio-based” monomers and polymers identical to their petroleum counterpart, such as Bio-PET, or bio-polyethylene, etc.

The protein in the biomass is what our process uses as the “polymeric” material in the blends. Proteins, by definition, are polymer chains of amino acids, which offer a variety of hydrophobic and hydrophillic interactions based upon the amino acid profile. Through thermomechanical processing, such as twin screw extrusion, the heat and shear forces exerted on the native protein complexes force them to denature and unfold providing a network of elongated polymer-like threads when blended with a base resin. The proteins have hydroxl groups available that can hydrogen bond and covalently bond in the presence of polar side groups on polymer chains as well as maleated chemical interactions. By adding conventional coupling agents, tensile strength and moisture absorption can be significantly improved.

The remaining portion of the non-protein biomass is usually composed of carbohydrates such as cellulose, hemicellulose, polysaccharides, but have little to no lignin. The crude fiber portion of the biomass has been shown to act like a reinforcing agent, increasing stiffness and tensile strength, but reduces elongation. The Ash fractions can range from 10-30% depending on cultivation method, however we believe the ash or minerals, will behave like a mineral filler, similar to calcium carbonate as it will be homogeneously blended throughout the matrix along with the biomass. Algae grown for bioremediation generally have a low lipid content, around 10% or less, and in cases where algae is being grown for biofuels, with high oil contents, the oil will be extracted leaving a protein-rich post extracted meal which will be well suited for compounding. Other value added compounds, such as high value pigments and antioxidants may also be extracted which will help in being able to modify the plastic color from dark green or brown to a lighter color which is easier to mask with color additives. Biomass particle size is also an important variable and needs to be optimized depending on conversion technology and application.

We have been successful compounding algae blends with some base resins up to 70% bio, however the majority of our formulations used in injection molding are set at a 50/50 blend which provides stronger performance characteristics. However, pure 100% algae dogbones have been made under compression molding, but do not have the performance properties compared to the injection molded blends.

QUESTION:

What is the preferred end-of-life treatment of this unique bio-based plastic? Is it similar to the approach taken by PLA supplier NatureWorks, which looks to generate the quantity necessary to sustain the creation of a new closed-loop recycling process in which PLA would be recycled in its own post-consumer stream?

ANSWER:

In the case that Algae is compounded with biodegradable base resins such as PLA, PHA, PHB, TPS, PBAT, and others, the final bioplastic will have the same or higher degree of biodegradability. Since we are dealing with biomass, the algae component is consumable by microbes, and the slight hydrophillic nature of the resin allows water to penetrate and accelerate the biodegradation process under the proper composting conditions. ALGIX still is testing the biodegradability rate and cannot not comment on degradation curves yet, as most of our research has been on formulation, co-processing, and performance related milestones.

When biomass from any source is compounded with a base resin, the resulting formulation becomes distinct from the recyclable pure resin. This is even the case with different polymer composites that may have two or more resin constituents. Although the biomass will be able to sustain some level of recycling, due to the more fragile nature of the resins bio building blocks, the performance will likely decrease, as with most other conventional recycled resins. We do not necessarily see a unique algal-blended stream of plastics, just due to the numerous variables in the formulations. A recent study by the American Chemical Council found that the US has a dismally low recycling rate below 10% but the state of New Hampshire has an exceptionally high recovery rate of over 40%. Instead of recycling these materials, which requires sophisticated sorting equipment or lots of manual labor, an easier approach was to convert the non-recyclable plastic waste steam into energy using boilers for steam and electricity production. I believe they still recycled some of the more easily sorted materials, like plastic water/soda bottles, just used any non-spec plastic for waste-2-energy…This not only reduced the cost associated with handling and processing the numerous recycling streams, it provided a substantial amount of alternative energy. If algae blended with synthetic non-biodegradable polymers increases in usage, the biomass fraction essentially acts as a bioenergy source at the end of its lifecycle. The conclusion that the ACC drew was that there is a dramatic shift in the amount of states shifting their focusing from complex sorting/recycling to a more direct and streamlined waste-to-energy approach. As Waste-2-energy increases, the concern about having closed loop recycling, although a wonderful concept, will be alleviated because the “other” non-recyclable plastics now can be converted to energy instead of being landfilled. The algae fraction of the plastics represents a carbon neutral component of the resin and energy feedstock.

ALGIX is initially focusing on product streams of plastic that have a low or absent recycling rate due to various factors; these include paint cans, pesticides, fertilizers, mulch films, and carpet products. There exists active programs for recycling carpets by shaving the fibers and grinding the backings for use in new carpets (at some minor percentage) as well as pure post-consumer-grade base resins, usually PP based. New product lines can be generated using post consumer grade resins with post-industrial grade algae biomass to provide a bioresin with a very low eco-footprint. We have a research proposal pending on conducting an LCA based on the algae biorefinery approach for bioplastics to further quantify these environmental and economic benefits.

That should be enough for yall to chew on for a bit…

Let’s all give a big digital THANK YOU to Algix for being so informative and transparent with their exciting new technology!

Hellllooooooo! Man, it has been a crazy week! I had no idea how much Pack Expo would take out of me!

Dordan now has over 30+ followers on Twitter, which makes me feel really cool, but I want MORE MORE MORE. So follow me @DordanMfg. Good times.

Click here to check out Dordan’s 2010 Pack Expo only Show Specials!

Good news: We have a ton attendees looking for us at Pack Expo via our online booth http://my.packexpo.com/pei2010nn/public/Booth.aspx?BoothID=107696, which is super cool, and I have booked interviews with three different packaging publications, so this show should be a grand occasion! We have events almost every night (CardPak’s Sustainability Dinner, AVMP networking event, Meet the Press, and more!) so I am totally PUMPED!

I was at McCormick Place yesterday to set up the booth and it was a rather enjoyable experience: our booth was where it was suppose to be; the Union workers were really helpful; and, I met the floor manager, Louie, who oozes old school Chicago. Dordan’s booth looks great, and I can’t wait for the Show to begin!

Before we get into the meat of today’s post, I came across some random industry tid bits that I thought I would share with you, my packaging and sustainability friends.

First, and this is sort of old news, but did you guys hear about the SRI Consulting study that determined that those countries with adequate space and little recycling infrastructure should landfill PET bottles as opposed to recycle in the context of carbon footprint reduction!?! The name of the report is “PET’s Carbon Footprint: To Recycle or Not to Recycle,” and is described as “an independent evaluation of the carbon footprint of PET bottles with analysis of secondary packaging from cradle to grave and from production of raw materials through disposal.” While the report cost an arm and a leg to download, an abstract of the report is available here: http://www.sriconsulting.com/Press_Releases/Plastic-Bottle-Recycling-Not-Always-Lowest-Carbon-Option_16605.html.

The report concludes:

• Shipping distances are not footprint crucial;
• Incineration creates the highest footprint;
• PET recyclate (HA, I thought I made that word up) has a lower footprint than virgin PET.

Weird bears; I wonder who funded this study…

Next, someone tweeted (yes, I said tweeted) this industry tid bit: “Biopolymers are Dirtier to Produce than Oil-Based Polymers, says Researchers” @ http://www.environmentalleader.com/2010/10/22/biopolymers-are-dirtier-to-produce-than-oil-based-polymers-say-researchers/ .

After perusing the article, I was surprised that PLA exhibited the maximum contribution to eutrophication, as every COMPASS LCA I have performed comparing paper and plastic shows that paper contributes WAY MORE to eutrophication than plastic…but I guess this makes sense in the context of PLA’s contribution because paper is based on a “crop” as is PLA; therefore, require similar resource consumption/toxin emissions?

Then there is this statement, which is crazzzyyyy: “biopolymers exceeded most of the petroleum-based polymers for ecotoxicity and carcinogen emissions.” What does that mean?!? Where are the carcinogens coming from? And, where did these researches get all this LCI data for these new bio resins in order to make the statements they do?

Wow the land of biopolymers is confusion.

And that provides a perfect segway into today’s post.

As you know, many of Dordan’s customers have expressed great interest in biopolymers because, according to a recent consumer research study, “biodegradation” is one of the most desired “green” characteristics of a package in the eyes of the consumer; I guess people don’t like the idea of things persisting for years and years in landfill…

As an aside, did you see this McDonalds Happy Meal biodegradation test?!? Apparently, after 180 days, a Happy Meal did not even begin to show signs of biodegradation! Check it out here: http://www.littleabout.com/Odd/sally-davies-mcdonalds-happy-meal/98413/ .

And, as we all know, it doesn’t matter if it is paper, plastic, or a banana peal; nothing biodegrades in a landfill because there is no oxygen and sunlight. But that is beside the point.
Where was I…?
Yes, we have been asked many questions about biopolymers, many of which, we didn’t have the answers to because depending on who you ask, you get different responses. So, first we did some background research on biodegradable/compostable plastics in general. You can download our report here: http://www.dordan.com/sustainability_ftc.shtml Then we began sampling the available resins and performing internal tests to see how they performed and what applicability they have to the sustainability goals of our customers. Though we have invested a considerable amount of time into trying to understand biopolymers, we still have much to learn; therefore, we decided that during Pack Expo we would share all our findings with attendees in hopes of opening the lines of communication and educating ourselves, our supply chain and our industry about the pros and cons of this new family of non traditional resins. After all, the last thing the plastics industry wants to do is flood the market with something they don’t really understand, from both an energy consumption/GHG emission and end of life management perspective, not to mention price and performance! So, if you come by Dordan’s booth E-6311 we will have 4 different bioresins on display for you to touch and see, accompanied by a lot of good information.

For those of you unable to attend Pack Expo, I have included most of the information below. Enjoy!!!

Cellulous Acetate:

Typical Physical Properties:

• Acceptable for use in food contact packaging;
• High clarity and gloss, with low haze;
• High water vapor transmission rate;
• Good tensile strength and elongation, combined with relatively low tear strength;
• Good die cutting performance and good printability and compatibility with adhesives;
• Available in matt and semi-matt finishes.

Environmental Aspects:

• Feedstock: Cellulous from Sustainable Forestry Initiative managed forestry in North America; acetic anhydride, a derivative of acetic acid; and, a range of different plasticisers.
• Complies with EN 13432 and ASTM D 6400 Standards for industrial biodegradability and compostability; and, received Vincotte OK Compost Home certification.
• Complies with US Coneg limits for heavy metal content in packaging materials.
• Classified in the paper and board category in the UK, in view of its cellulosic base. As a consequence, the levy on cellulous acetate is lower than that on other thermoplastic films which are classified as plastics; however, levies only apply to those markets where EPR legislation exists.
• There is no post consumer or post industrial market for this resin. However, in principal, film is readily recyclable and because of its predominantly cellulosic nature, it is feasible that it can be recycled along with paper in a re-pulping process.

PHA:

Typical physical properties:

• A general purpose, high melt strength material suitable for injection molding, thermoforming, blow/cast film and sheet extrusion;
• Durable and tough;
• Ranging from flexible to rigid;
• Shelf stable;
• Heat and moisture resistant;
• Pending FDA clearance for use in non-alcoholic food contact applications, from frozen food storage and microware reheating to boiling water up to 212 degrees F. The pending clearance will include products such as house-wares, cosmetics and medical packaging.

Environmental Aspects:

• Feedstock: Poly Hydroxy Alkanoate (PHA) polymer made through a patented process for microbial fermentation of plant-derived sugar. PHA is unique in that it represents the only class of polymers that are converted directly by microorganisms from feedstock to the polymetric form—no additional polymerizations steps being required.
• Complies with EN 13432 and ASTM D 6400 Standards for industrial biodegradability and compostability; complies with ASTM D 7081 Standard for marine biodegradation; received Vincotte OK Compost Home certification; and, received Vincotte OK Biodegradable in Soil certification. The rate and extent of its biodegradability will depend on the size and shape of the articles made from it.
• There is no post consumer or post industrial market for this resin. However, in principal, film is readily recyclable.

PLA:

Typical physical properties:

• Acceptable for use in food-contact packaging;
• Good clarity but can haze with introduction of stress;
• PLA sheet is relatively brittle at room temperature; however, the toughness of the material increases with orientation and therefore thermoformed articles are less brittle than PLA sheet.
• PLA is frequently thermoformed using forming ovens, molds and trim tools designed for PET or PS; however, PLA has a lower softening temperature and thermal conductivity than PET or PS, which results in longer cooling time in the mold for PLA vs. PET or PS.
• Exposure to high temperatures and humidity during shipping or storage can adversely affect the performance and appearance of resin.
• At temperatures below its glass transition point, PLA is as stable as PET.

Environmental Aspects:

• Feedstock: Polylactide or Polylactic Acid (PLA) is a synthetic, aliphatic polyester from lactic acid; lactic acid can be industrially produced from a number of starch or sugar containing agricultural products.
• Derived 100% from annually renewable resources like corn.
• PLA resin complies with EN 13432 and ASTM D 6400 Standards for industrial biodegradability and compostability; however, after conversion, said Standards no longer apply.
• There is no post consumer or post industrial market for this resin. However, several recycling methods can be applied to waste PLA. Concern has been voiced that PLA is contaminating the PET bottle recycling infrastructure.
• Competition between human food, industrial lactic acid and PLA production is not to be expected.

PLA & starch-based product

Typical physical properties:

• Only available in one color and opacity due to the natural ingredients changing in color and intensity; known to have black or brown specs in or on the sheet due to said natural ingredients.
• Good impact strength;
• Demonstrates superior ink receptivity over petroleum based products;
• Heat sensitive; therefore, care must be taken when shipping, handling, storage, printing and further processing this material.

Environmental Aspects:

• Feedstock: PLA polymer is a major ingredient; however, through a supply partner, this material incorporates next generation technology of modifying PLA polymer with plant/crop based starches along with natural mineral binders to enhance its impact.
• Made by an EPA Green Power Partner with 100% renewable energy.
• Complies with EN 13432 and ASTM D 6400 Standards for industrial biodegradability and compostability.
• There is no post consumer or post industrial market for this resin. However, in principal, this film is readily recyclable.

Now, check out the comparative below: price is not literally dollar amounts but an internal calculation we have determined to allow you to contextualize the fluctuating prices with different resins.

Bio Resin Show N Tell Comparative
Spec Sheet

Resin $ Comparative Heat Deflection @ 264 PSI Density/Yield

PVC
(clear) 0.050 140-170 F 19.67

HIPS
(opaque) 0.048 170-205 F 26.30

HDPE
(opaque) 0.042 180 F (@66 PSI) 28.85

RPET,
100% PC
(clear) 0.057 150 F 21.00

Cellulous Acetate
(clear) 0.261 125-225 F 23.00

PLA
(clear) 0.049 105 F (@ RH 50%) 22.30

PLA + starch
(opaque) 0.059 127 F 22.10

PHA
(opaque) 0.117 212 F 21.40

Sorry the columns got all jacked, but I think you get the picture.

Alright, this is going to be my last post until after Pack Expo. I wish everyone a fab Halloween weekend and a successful Show, for both exhibitors and attendees.

If any of you, my packaging and sustainability friends, are coming to Pack Expo, PLEASE stop by Dordan’s booth E-6311; I would really love to meet you, my anonymous followers, and I know all the good blues bars in Chicago!

And, isn’t it exciting—I learned how to integrate links into my blog—neato!

Tootles!